本发明公开一种基于电商评论识别恶意用户的方法,步骤是:步骤1,构建三元组用于存储评分数据;步骤2,初始化所有用户的信誉;步骤3,计算各商品在各个评分下的带权群组大小;步骤4,计算不同商品中各群组的占比矩阵;步骤5,将占比矩阵映射到行和列分别对应用户和商品的矩阵中;步骤6,计算各用户所在群组占比的平均值和标准差,并计算用户评分的标准差;步骤7,根据步骤6得到的数据计算用户信誉;步骤8,基于步骤7得到的用户信誉,重复步骤3‑7,然后计算两次用户信誉的差值,若大于阈值则继续迭代,直至小于或等于阈值;步骤9,将信誉最低的L个用户当作恶意用户。此种方法可提高筛选恶意用户的精确度,增大识别过程计算的稳定性。